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Abstract 

The effort to improve the quality of education aims to produce 

generations or individuals who excel in thinking, actions, and decision-

making. The measurement of students' character is based on their school 

grades. Good or excellent grades are influenced by several factors. 

Research on student achievement improvement has been conducted 

across various parts of the world. More specifically, the data used in 

this research employs linear regression method on public data regarding 

students' learning achievement in the field of mathematics, which is 

available in the UCI Machine Learning repository. The utilization of 

public data aims for the research to be validated by other researchers. 

Accurately selecting the appropriate factors will enhance the school's 

success in making decisions to improve student achievements. The 

results presented in this study indicate that the attribute G3 has the 

highest correlation with other attributes, followed by G2 and G1. 
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1. INTRODUCTION 

Since its early discovery, mathematics has 

revealed its uniqueness through its universality as a 

scientific language that transcends cultural 

boundaries, providing a consistent and precise 

foundation in science [1]. Through the development 

of theorems and proof methods, mathematics 

facilitates the exploration of analytical thinking and 

the solution of complex problems, which remain 

relevant today in the advancement of sophisticated 

technologies such as artificial intelligence and data 

analysis. Over time, mathematics has also given rise 

to mathematical models that provide profound 

insights into the real world, while its abstractions 

teach the ability to think abstractly and lead to the 

beauty of structural patterns and mathematical 

concepts [2]. 

Some of the students' issues with mathematics 

include difficulties in understanding basic concepts, 

where some students might face challenges in 

grasping fundamental mathematical concepts such as 

arithmetic operations, numbers, decimals, and 

fractions [2]. The lack of motivation contributes to 

many students feeling demotivated towards 

mathematics due to the perception that the subject is 

difficult or irrelevant to everyday life [3]. 

Additionally, the fear of numbers leads to students 

experiencing anxiety towards numbers, known as 

"math anxiety," which can hinder their performance 

in the subject of mathematics [4]. Furthermore, the 

severity lies in the lack of practical practice, even 

though learning mathematics requires active practice 

and continuous understanding. Insufficient practice 

and profound understanding can result in difficulties 

applying concepts in real-life situations [5]. 

Research related to improving students' 

understanding of mathematics has been rapidly 

advancing nowadays. Approaches from the 
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computational aspect to various variables have been 

carried out. An approach involving the creation of a 

smart education platform has been developed based 

on the processing of extensive data using machine 

learning to provide relevant content to the learners 

[6]. The development of learners' soft skills in 

entrepreneurship has been pursued by establishing an 

educational system grounded in the results of a 

machine learning approach [7]. 

Prior to the onset of online learning, students had 

observable attitudes toward the process and outcomes 

of their learning. However, due to the occurrence of 

COVID-19 and the transition to online learning, new 

challenges have emerged. One such challenge is the 

students' lack of understanding and engagement with 

learning materials, as learning can now take place 

anywhere and anytime. Research focused on creating 

decision support systems to assist teachers in 

understanding students' conditions has also been 

initiated to detect undesired behaviours as early as 

possible [8]. On the other hand, a different approach 

was undertaken by [9], where linear regression was 

used to eliminate variables that do not influence 

students' learning development. However, the case 

study conducted involved pharmacy students. Linear 

regression was previously employed to identify the 

causes of low birth weight, where low birth weight 

contributes to an increased infant mortality rate. 

Researchers attempted to incorporate maternal 

education as a factor in the study, but maternal 

education was not an independent variable [10]. 

 

II. LITERATURE 

2.1 Linear Regression Model 

A linear regression model describes the 

relationship between a dependent variable, y, and one 

or more independent variables, X. The dependent 

variable is also called the response variable. 

Independent variables are also called explanatory or 

predictor variables. Continuous predictor variables 

are also called covariates, and categorical predictor 

variables are also called factors. The matrix X of 

observations on predictor variables is usually called 

the design matrix [17]. Multiple linear regression 

model is 

yi=β0+β1Xi1+β2Xi2+⋯+βpXip+εi, i=1, ⋯, n, 

 

were 

• n is the number of observations. 

• yi is the ith response. 

• βk is the kth coefficient, where β0 is the 

constant term in the model. Sometimes, 

design matrices might include information 

about the constant term. 

However, fitly or stepwise by default 

includes a constant term in the model, so you 

must not enter a column of 1s into your 

design matrix X. 

• Xij is the ith observation on the jth predictor 

variable, j = 1, ..., p. 

• εi is the ith noise term, that is, random error. 

If a model includes only one predictor variable 

(p = 1), then the model is called a simple linear 

regression model. In general, a linear regression 

model can be a model of the form 

yi=β0+
K
∑

k=1

βkfk(Xi1,Xi2,⋯,Xip)+εi, i=1,⋯,n, 

where f (.) is a scalar-valued function of the 

independent variables, Xijs. The functions, f (X), 

might be in any form including nonlinear functions or 

polynomials. The linearity, in the linear regression 

models, refers to the linearity of the coefficients βk. 

That is, the response variable, y, is a linear function 

of the coefficients, βk. 

 

2.2 Normalization 

Normalization, a vital aspect of Feature Scaling, 

is a data preprocessing technique employed to 

standardize the values of features in a dataset, 

bringing them to a common scale. This process 

enhances data analysis and modeling accuracy by 

mitigating the influence of varying scales on machine 

learning models [17]. 

Normalization is a scaling technique in which 

values are shifted and rescaled so that they end up 

ranging between 0 and 1. It is also known as Min-Max 

scaling. 

Here’s the formula for normalization: 

 

 
 

Here, Xmax and Xmin are the maximum and the 

minimum values of the feature, respectively. 

• When the value of X is the minimum value in the 

column, the numerator will be 0, and hence X’ is 

0 

• On the other hand, when the value of X is the 

maximum value in the column, the numerator is 

equal to the denominator, and thus the value of X’ 

is 1 

• If the value of X is between the minimum and the 

maximum value, then the value of X’ is between 

0 and 1 

 

III. RESEARCH METHODS 

The research methodology employed in this 

study is a case study approach, where we will delve 

deep into the issues faced by a group of students in 

the subject of mathematics. We will identify the 

factors influencing their level of understanding and 

develop suitable solutions based on in-depth analysis 

of individual cases. We will utilize publicly available 

data from the UCI Machine Learning repository to 

gain a comprehensive understanding of the 

challenges students encounter in comprehending 

mathematical concepts. This approach allows for 

other researchers to replicate the study, ensuring 

fairness and accuracy in measurement. Furthermore, 

we will analyse this data using both qualitative and 

quantitative approaches to identify common patterns 
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and individual differences. From this analysis, we 

will formulate recommendations and learning 

strategies tailored to the specific needs of each 

student, with the aim of enhancing their 

comprehension of the subject of mathematics. 

This research employs a linear regression 

method to analyse the relationship between two 

variables deemed to mutually influence each other. In 

this context, we gather data regarding students' 

achievements in mathematics (dependent variable) 

and the factors influencing these achievements, such 

as study time, practice frequency, and parental 

support (independent variables). We will apply linear 

regression analysis to measure the extent to which the 

independent variables can account for the variation in 

students' mathematics performance. Through this 

approach, we will be able to identify the most 

influential factors on mathematics performance and 

make predictions about how changes in the 

independent variables can impact student 

performance. The outcomes of this research are 

expected to provide a deeper understanding of the 

factors affecting students' mathematics performance 

and offer guidance to educators in enhancing 

mathematics instruction. 
 

IV. RESULTS 

4.1 Data Obtained 

The data obtained from the UCI Machine 

Learning repository (refer to Table 1) is public data 

created by Paulo Cortez [11]. He aimed to compare 

the performance of Portuguese students with Irish 

students. The approach employed involved 

classification and regression. This study utilized 

multiple linear regression and was conducted using 

the Rapid Miner application. Multiple linear 

regression was used to model the relationship 

between more than one independent variable and a 

single dependent variable. In general, the formula for 

multiple linear regression can be expressed as 

follows: 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝+∈ 

 

Where: 

Y represents the dependent variable to be explained. 

β_0 is the constant (intercept). 

β_1 〖, β〗_2,…,β_p represents the regression 

coefficients for each independent variable X_1 

〖,X〗_2,…,X_p. 

X_1 〖, X〗_2,…,X_p is the independent variable 

used in the model. 

∈ is the error or residual, which is the difference 

between the actual value (Y) and the value predicted 

by the model. 

The objective of multiple linear regression is to 

determine the coefficient values β_0,β_1 〖,β〗
_2,…,β_p which provides the best-fitting model to 

explain the variation in the dependent variable (Y) 

based on the independent variables X_1 〖,X〗
_2,…,X_p. 

Table 1. Portuguese Students Data 

ID Data Type Information 

school Nominal 
student’s sex (binary: female or 
male) 

sex Nominal 
student’s age (numeric: from 15 to 

22) 

age Integer 
student’s school (binary: Gabriel 

Pereira or Mousinho da Silveira) 

address Nominal 
student’s home address type 
(binary: urban or rural) 

famsize Nominal 
parent’s cohabitation status (binary: 

living together or apart) 

Pstatus Nominal 
mother’s education (numeric: from 

0 to 4a) 

Medu Integer mother’s job (nominal) 

Fedu Integer 
father’s education (numeric: from 0 
to 4a) 

Mjob Nominal father’s job (nominal) 

Fjob Nominal 
student’s guardian (nominal: 

mother, father or other) 

reason Nominal family size (binary: ≤ 3 or > 3) 

guardian Integer 

quality of family relationships 

(numeric: from 1 – very bad to 5 – 

excellent) 

traveltime Integer 

reason to choose this school 

(nominal: close to home, school 

reputation, course preference or 
other) 

studytime Integer 

home to school travel time 
(numeric: 1 – < 15 min., 2 – 15 to 

30 min., 3 – 30 min. to 1 hour or 4 

– > 1 hour). 

failures Integer 

weekly study time (numeric: 1 – < 

2 hours, 2 – 2 to 5 hours, 3 – 5 to 

10 hours or 4 – > 10 hours) 

schoolsup Nominal 
number of past class failures 

(numeric: n if 1 ≤ n < 3, else 4) 

famsup Nominal 
extra educational school support 
(binary: yes or no) 

paid Nominal 
family educational support (binary: 

yes or no) 

activities Nominal 
extra-curricular activities (binary: 

yes or no) 

nursery Nominal 
extra paid classes (binary: yes or 
no) 

higher Nominal 
Internet access at home (binary: 

yes or no) 

internet Nominal 
attended nursery school (binary: 

yes or no) 

romantic Nominal 
wants to take higher education 
(binary: yes or no) 

famrel Integer 
with a romantic relationship 

(binary: yes or no) 

 

ID Data Type Information 

freetime Integer 
free time after school (numeric: from 
1 – very low to 5 – very high) 

goout Integer 
going out with friends (numeric: from 

1 – very low to 5 – very high) 

Dalc Integer 

weekend alcohol consumption 

(numeric: from 1 – very low to 5 – 

very high) 

Walc Integer 

workday alcohol consumption 

(numeric: from 1 – very low to 5 – 

very high) 

health Integer 
current health status (numeric: from 1 

– very bad to 5 – very good) 

absences Integer 
number of school absences (numeric: 
from 0 to 93) 

G1 Integer 
first period grade (numeric: from 0 to 

20) 
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G2 Integer 
second period grade (numeric: from 0 

to 20) 

G3 Integer final grade (numeric: from 0 to 20) 

 

4.2 Normalization Process 

The next step involves normalization by selecting 

a range transformation method. Normalization with 

Range Transformation is a data preprocessing 

technique utilized to scale data values within a 

specific range. The objective is to render the data 

more suitable for machine learning algorithms that 

are sensitive to scale, ensuring that all attributes 

contribute equally to the analysis. 

The normalization process with Range 

Transformation involves the following steps: 

1. Determining the Range: Define the desired new 

range for the data after normalization. Commonly 

used ranges are from 0 to 1 or from -1 to 1. 

2. Calculating Minimum and Maximum: Calculate 

the minimum and maximum values of each 

attribute in the dataset. 

3. Transformation: Apply the formula to convert 

each attribute value into the desired range. The 

general formula is: 

 
𝑛𝑒𝑤𝑣𝑎𝑙𝑢𝑒

=  
𝑜𝑙𝑑_𝑣𝑎𝑙𝑢𝑒 − min _𝑣𝑎𝑙𝑢𝑒

max _𝑣𝑎𝑙𝑢𝑒 − min _𝑣𝑎𝑙𝑢𝑒
 𝑋(𝑛𝑒𝑤_ max −𝑛𝑒𝑤_min )

+ 𝑛𝑒𝑤_𝑚𝑖𝑛 

 

Where: 

- old-value represents the initial attribute value. 

- min_value and max_value are the minimum and 

maximum values of the attribute. 

- new_min and new_max indicate the desired new 

range. 

4.  Implementation on the Entire Dataset: Apply the 

transformation formula to each value within the dataset 

for all attributes. 

The outcome of normalization with Range 

Transformation is a dataset that possesses a uniform 

range of values within the specified range. This aids 

machine learning algorithms in obtaining more 

balanced information from all attributes and avoids 

bias towards attributes with larger scales. Table 1 

underwent changes in several attributes after the 

normalization process. These attributes are: age, 

Medu, Fedu, traveltime, studytime, failures, famrel, 

freetime, goout, Dalc, Walc, health, absences, G1, 

G2, and G3. Further details of the results can be 

observed in Table 2. 
 

Table 2. Normalization Results

ID 
Initial 

data type 
Least Most Values 

Data type 

after 

normalization 

Least Most Values 

school Polynomial MS (46) GP (349) 
GP (349), MS 

(46) 
Polynomial MS (46) GP (349) 

GP (349), MS 

(46) 

sex 
Polynomial Least Most Values Polynomial Least Most Values 

 M (187) F (208) 
F (208), M 

(187) 
 M (187) F (208) 

F (208), M 

(187) 

age 
Integer Min Max Average Real Min Max Average 
 15 22 16.696  0 1 0.242 

address 
Polynomial Least Most Values Polynomial Least Most Values 
 R (88) U (307) U (307), R (88)  R (88) U (307) U (307), R (88) 

famsize 

Polynomial Least Most Values Polynomial Least Most Values 

 LE3 

(114) 

GT3 

(281) 

GT3 (281), 

LE3 (114) 
 LE3 

(114) 

GT3 

(281) 

GT3 (281), LE3 

(114) 

Pstatus 
Polynomial Least Most Values Polynomial Least Most Values 
 A (41) T (354) T (354), A (41)  A (41) T (354) T (354), A (41) 

Medu Integer Min Max Average Real Min Max Average 
  0 4 2.749  0 1 0.687 

Fedu Integer Min Max Average Real Min Max Average 
  0 4 2.522  0 1 0.63 

Mjob 

Polynomial Least Most Values Polynomial Least Most Values 

 health 
(34) 

other 
(141) 

other (141), 

services 
(103), ...[3 

more] 

 health 
(34) 

other 
(141) 

other (141), 

services 
(103), ...[3 

more] 

Fjob 

Polynomial Least Most Values Polynomial Least Most Values 

 health 

(18) 

other 

(217) 

other (217), 

services 

(111), ...[3 
more] 

 health 

(18) 

other 

(217) 

other (217), 

services 

(111), ...[3 
more] 

reason 

Polynomial Least Most Values Polynomial Least Most Values 

 other 
(36) 

course 
(145) 

course (145), 
home (109) 

 other 
(36) 

course 
(145) 

course (145), 
home (109) 

ID 
Initial 

data type 
Least Most Values 

Data type 

after 

normalization 

Least Most Values 

guardian Polynomial Least Most Values Polynomial Least Most Values 
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 other 
(32) 

mother 
(273) 

mother (273), 

father (90), ...[1 

more] 

 other 
(32) 

mother 
(273) 

mother (273), 

father (90), ...[1 

more] 

traveltime 
Integer Min Max Average Real Min Max Average 
 1 4 1.448  0 1 0.559 

studytime 
Integer Min Max Average Real Min Max Average 
 1 4 2.035  0 1 0.345 

failures 
Integer Min Max Average Real Min Max Average 
 0 3 0.334  0 1 0.111 

schoolsup 

Polynomial Least Most Values Polynomial Least Most Values 

 yes (51) no (344) 
no (344), yes 

(51) 
 yes (51) no (344) 

no (344), yes 

(51) 
famsup Polynomial Least Most Values Polynomial Least Most Values 

  no 

(153) 
yes (242) 

yes (242), no 

(153) 
 no (153) yes (242) 

yes (242), no 

(153) 

paid 

Polynomial Least Most Values Polynomial Least Most Values 

 yes 

(181) 
no (214) 

no (214), yes 

(181) 
 yes (181) no (214) 

no (214), yes 

(181) 

activities 

Polynomial Least Most Values Polynomial Least Most Values 

 no 

(194) 
yes (201) 

yes (201), no 

(194) 
 no (194) yes (201) 

yes (201), no 

(194) 

nursery 

Polynomial Least Most Values Polynomial Least Most Values 

 no (81) yes (314) 
yes (314), no 

(81) 
 no (81) yes (314) 

yes (314), no 

(81) 

higher 

Polynomial Least Most Values Polynomial Least Most Values 

 no (20) yes (375) 
yes (375), no 

(20) 
 no (20) yes (375) 

yes (375), no 

(20) 

internet 

Polynomial Least Most Values Polynomial Least Most Values 

 no (66) yes (329) 
yes (329), no 

(66) 
 no (66) yes (329) 

yes (329), no 

(66) 

romantic 

Polynomial Least Most Values Polynomial Least Most Values 

 yes 

(132) 
no (263) 

no (263), yes 

(132) 
 yes (132) no (263) 

no (263), yes 

(132) 

famrel 
Integer Min Max Average Real Min Max Average 
 1 5 3.944  0 1 0.736 

freetime 
Integer Min Max Average Real Min Max Average 
 1 5 3.235  0 1 0.559 

goout 
Integer Min Max Average Real Min Max Average 
 1 5 3.109  0 1 0.527 

Dalc 
Integer Min Max Average Real Min Max Average 
 1 5 1.481  0 1 0.12 

Walc 
Integer Min Max Average Real Min Max Average 
 1 5 2.291  0 1 0.323 

health 
Integer Min Max Average Real Min Max Average 
 1 5 3.554  0 1 0.639 

absences 
Integer Min Max Average Real Min Max Average 
 0 75 5.709  0 1 0.076 

G1 
Integer Min Max Average Real Min Max Average 
 3 19 10.909  0 1 0.494 

G2 
Integer Min Max Average Real Min Max Average 
 0 19 10.714  0 1 0.564 

G3 
Integer Min Max Average Real Min Max Average 
 0 20 10.415  0 1 0.521 

4.2 Correlation Matrix 

The next stage involves determining the 

Correlation matrix, which is a table indicating the 

correlation coefficients between two or more 

variables. Correlation is a statistical measure that 

assesses the extent to which two variables are related 

to each other. Correlation can be positive (meaning 

when one variable goes up, the other variable tends to 

go up as well), negative (meaning when one variable 

goes up, the other variable tends to go down), or zero 

(indicating no clear correlation relationship). 

The correlation matrix is typically displayed in 

the form of a square table, with variables placed in 

rows and columns. The main diagonal of this matrix 

contains the correlation coefficients between each 

variable and itself, which always has a value of 1 

(self-correlation). The rest of the matrix contains the 

correlation coefficients between pairs of different 

variables. The correlation matrix is highly valuable in 

statistical analysis as it can provide insights into the 

relationships among various variables. 

For instance, in data analysis, the correlation 

matrix can assist in identifying variables with strong 

relationships, enabling those variables to be further 

explored or analysed together. It can also aid in 

selecting variables to be included in regression 

analysis models or other statistical models. The 

correlation matrix values range between -1 and 1, 

with -1 indicating a perfect negative correlation, 1 

indicating a perfect positive correlation, and 0 

indicating no correlation, as shown at figure 1.  
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Positive correlation Negative 

correlation 

Zero value 

 

Figure 1. Correlation Type 

 

The closer the value is to 0, the weaker the 

correlation relationship. Creating a correlation matrix 

involves plotting a positive curve line. This is done to 

identify which attributes impact each other and their 

values will increase as data expands. 

Attribute selection, also known as feature 

selection, is a process in data analysis and machine 

learning where we choose the most relevant or 

significant subset of attributes (variables) available in 

a dataset. The primary goal of attribute selection is to 

reduce data dimensionality, avoid issues related to 

"curse of dimensionality" or attributes that don't 

provide significant information, and enhance model 

performance and interpretability is present at figure 2. 

 
Figure 2. Matrix Correlation  

 

It can be observed that G1, G2, and G3 exhibit 

the highest values compared to the other attributes. 

When comparing these three attributes, their values 

can be seen in Table 3. The correlation value of G2 

with G3 is the highest, scoring 0.904, followed by G2 

with G1 scoring 0.85, and finally G1 with G3 scoring 

0.80. From this, it is evident that the attribute G2 has 

the most influence among the attributes. However, 

since we are interested in the G3 value or the end-of-

term grade, G2 becomes an independent attribute. 

Table 3. Matrix Correlation  

 G1 G2 G3 

G1 1 0.852118 0.801468 

G2 0.852118 1 0.904868 

G3 0.801468 0.904868 1 

 

To formulate a multiple linear regression 

equation, we need to examine each attribute that holds 

the most weight concerning the G2 attribute. Feature 

selection techniques can offer a solution, specifically 

the "Select by Weight" feature. This technique is 

frequently used in data processing and machine 

learning to choose the most important or significantly 

weighted attributes for decision-making. The 

technique employed here is based on a specific 

weight selection. This approach involves assigning 

specific weights to each attribute based on domain 

knowledge, analysis, or certain assumptions. For 

instance, if you know in a particular analysis that 

some attributes are more critical than others, you can 

assign higher weights to those attributes. In this case, 

attribute selection for use in multiple linear regression 

is considered. 

To determine the appropriate attributes, the research 

employs the select by weight method, selecting the 

attribute with the highest value among others. This 

technique is commonly used in data processing and 

machine learning to select the most important or 

significantly weighted attributes for decision-making [12]. 

Based on the weight testing results, some attributes 

have values that are not suitable for linear regression 

processing. As a result, the two highest-weighted attributes 

were selected, and their types allow for linear regression 

processing. The weight test results can be observed in 

Figure 4. Initially, this study was limited to using 10 

attributes. However, based on the weight search results, the 

top 3 and 4 attribute values have demonstrated polynomial 

data types. Consequently, it was decided to test these two 

highest-weighted attributes to assess the root mean squared 

error (RMSE), squared correlation, and squared error 

values. 

Root Mean Squared Error (RMSE) is a commonly 

used evaluation metric in regression analysis or forecasting 

to measure how accurately a prediction model estimates 

actual values [13]. RMSE quantifies the extent of the 

difference between predicted values and actual values, 

providing an average error value in the same units as the 

target variable. 

How to calculate RMSE is as follows: 

1. Calculating the Difference in Squares: For each data 

point, calculate the difference in the squares between 

the predicted 〖y_hat〗_i values and true value y_i: 

 
𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑖 = (𝑦ℎ𝑎𝑡𝑖

− 𝑦𝑖)2 

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡 ( ∑( yhat − y)2/𝑛 

2. Calculating Average of Squared Difference: Compute 

the average of all the squared errors calculated in the 

previous step: 

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
 ∑(𝑦ℎ𝑎𝑡𝑖

− 𝑦𝑖)2

𝑛

𝑖=1

 

3. Calculating RMSE: The root of the Mean Squared 

Error gives the RMSE value, which is the average of 

the square roots of the difference between the predicted 

values and the actual values: 

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 

 

The lower the RMSE value, the more accurate the 

prediction model is in estimating the true value. RMSE 

also has easier interpretation in the context of data, because 

the units are the same as the units of the target variable. 

Figure 3. represent the weight of each attribute.  

Squared Correlation, or Squared Correlation 

Coefficient, refers to the squared correlation coefficient 
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between two variables. The correlation coefficient is a 

statistical measure that quantifies the extent to which two 

variables are linearly related to each other [14]. Squaring 

the correlation coefficient provides information about the 

proportion of variation in one variable that can be 

explained by the variation in another variable. 

 

 
Figure 3. The weight value of each attribute 

 

How to calculate Squared Correlation is as 

follows: 

1. Calculate Correlation Coefficient: First of all, 

calculate the correlation coefficient between two 

variables. You can use the Pearson Correlation 

formula or other suitable methods depending on 

the type of relationship and the type of data. 

2. Square the Correlation Coefficient: After getting 

the correlation coefficient, square the value: 

Squared Correlation=Pearson Correlation2  

Whereas Pearson Correlation represents the 

coefficient value of correlation between two 

variables. 

The result of Squared Correlation is a value between 0 

and 1. A value of 0 indicates no linear relationship between 

the variables, while a value of 1 signifies a perfect linear 

relationship between the variables (one variable can be 

fully explained by the other variable). Squared Correlation 

is often used in regression analysis to indicate how well the 

variability in the dependent variable is explained by the 

independent variable. However, it's important to note that 

Squared Correlation does not provide information about 

the direction of the relationship or causal impact. 

The final test involves determining the squared error 

value. Squared Error (SE) measures the squared difference 

between predicted and actual values in regression analysis 

or forecasting. The computation of Squared Error is as 

follows: 

1. Calculate Difference: For each data point, calculate the 

difference between the predicted values 𝑦ℎ𝑎𝑡𝑖
 and true 

value  𝑦𝑖 

𝐸𝑟𝑟𝑜𝑟𝑖 =  𝑦ℎ𝑎𝑡 𝑖
−  𝑦𝑖  

2. Square Difference: Square each difference calculated 

in the previous step: 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑖 =  (𝐸𝑟𝑟𝑜𝑟𝑖)2 

  

3. Compute Average of Squared Difference: Compute 

the average of all the squared errors calculated in the 

previous step:   

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
 ∑ 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑖

𝑛

𝑖=1

 

 

Here, n is the number of data points in the dataset. 

 

SquarEd Error provides an indication of the extent of 

difference between predicted and actual values. Nilai 

squared error yang lebih tinggi menunjukkan bahwa 

prediksi memiliki kesalahan yang lebih besar dalam A 

higher squared error value indicates that the prediction has 

a larger error in estimating the actual value [15]. Mean 

Squared Error (MSE) represents the average of all squared 

errors within the dataset [16]. It offers insight into the 

average prediction error in the model. A lower MSE value 

reflects better accuracy of the model in predicting actual 

values. SE and MSE are common evaluation metrics used 

in regression analysis or forecasting to measure the 

predictive performance of a model. 

The data testing process using RapidMiner was 

initiated by reading the dataset with the read CSV operator. 

Data preprocessing involved selecting all available 

attributes (33) to undergo linear regression processing. The 

primary objective of this research was to assess the impact 

of attributes on the final end-of-term grade (G3). The initial 

test employed simple linear regression, selecting the single 

highest-weighted attribute with a positive value for further 

testing. Subsequently, a multiple linear regression test was 

conducted with attribute selection using weighting. 

Interestingly, the attribute initially chosen with the highest 

positive weight did not appear in the weighted selection.  

Simple linear regression yielded an RMSE value of 

2.96, while multiple linear regression resulted in a value of 

5.15. For squared error testing, the simple linear model still 

produced smaller values compared to multiple linear 

regression, with respective scores of 8.50 and 26.57. The 

squared correlation values for simple linear regression 

indicate differences in RMSE and SE testing, consistently 

lower than in multiple linear regression. In this test, its 

value was unexpectedly higher at 0.49 compared to the 

value of 0.04 in multiple linear regression as shown at 

figure 4. 
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Figure 4. Test Result 

 

The measurement results using simple linear regression can actually still be subjected to further testing. This is due to 

the fact that in simple linear regression, there are several attributes with positive correlation values other than G2 and G1. 

The correlation values of these other attributes with G3 are displayed in Table 4.  

Table 4. Attributes Correlation Values 

Atribut Dependent 
Correlation 

Value 
RMSE SE SEC 

G3 G2 0.904868 2.916 8.505 0.498 

G3 G1 0.801468 2.311 5.341 0.772 

G3 Medu 0.217147 1.88 3.54 0.854 

G3 Fedu 0.152457 2.503 6.266 0.771 

G3 studytime 0.103456 1.413 1.996 0.95 

G3 famrel 0.101996 1.663 2.764 0.902 

G3 absences 0.098483 2.295 5.265 0.655 

G3 freetime 0.09782 0.929 0.863 0.947 

 

The testing outcomes for each of these attributes can be observed in Figure 5. 

 
Figure 5. Testing Outcomes. 
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V. CONCLUSION 

Based on the results of the discussion, it can be 

concluded that the quality of student study results in 

mathematics subjects is influenced by many things 

based on the student's background. The highest 

correlation was obtained by the final exam score (G3) 

of 0.904, the exam score in class 2 (G2) was 0.85 and 

the exam score in class 1 (G1) was 0.80. This shows 

that students tend to be more serious in higher classes. 

Apart from this, students' mathematics scores are also 

determined by supporting factors such as activities 

outside of school and absence from class. The test 

results on the model obtained RMSE results of 2.96, 

SE of 8.50 and SC of 0.49.  
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