CLASSIFICATION OF ASSISTANCE RECIPIENTS USING THE ALGORITHM C4.5

Diana Santi(1), Siti Aisyah(2), Asep Afandi(3), Dwi Marisa(4),


(1) Information Systems Study Program, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia Kotabumi
(2) Information Systems Study Program, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia Kotabumi
(3) Information Systems Study Program, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia Kotabumi
(4) Information Systems Study Program, Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia Kotabumi
Corresponding Author

Abstract


Poverty is a condition that results in an inability to meet basic needs such as housing, food, education, and health. Based on data from the Central Statistics Agency (BPS), the number of poor people in Indonesia in September 2019 was 24.79 million. To minimize social welfare problems, especially the problem of increasing poverty, the Government of Indonesia issued policies related to empowering poor families. The government policy is the Family Hope Program (PKH), but the Implementation of the Family Hope Program (PKH) has not been implemented on target. This has resulted in social jealousy between residents in the community [1], one of the villages where PKH assistance distribution is still not on target is Gilih Suka Negeri Village. Gilih Suka Negeri Village is one of the areas in Lampung Province, North Lampung Regency, South Abung District, which has a total of 7 RTs (RTs) with a population of approximately 1,776 people. The author chose algorithm method C4.5 (Decision Tree) because it can be used as a solution to determine the classification of beneficiaries. Algorithm C4.5 (Decision Tree) will classify beneficiaries of the Family Hope Program (PKH) based on how much they earn, where they live, and how many people they have in their household

Keywords


Algorithm C4.5, Data Mining, Python, Family Hope Program

References


S. A. Ruli Utami, Ferry Andhika Primadana, “Aplikasi Customer Relathionship Management Untuk Klasifikasi Pelanggan Menggunakan Algoritma C4.5,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 3, pp. 1426–1434, 2022.

A. A. Hana Atthifa Ryantika, Supriyanto, “Application of the K-Means Method for Clustering Best Selling Products in Ice Cream Sales,” J. TAM (Technology Accept. Model. Vol., vol. 14, no. 1, pp. 114–119, 2023.

E. Fitriani, “Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Sist. J. Sist. Inf., vol. 9, no. 1, pp. 103–115, 2020.

I. M. Septia Dian Anggriani, Muhammad Syahril, “Data Mining Algoritma C4 . 5 Untuk Menganalisa Penduduk Penerima Program Keluarga Harapan ( PKH ) ( Studi Kasus : Kelurahan Tualang V ),” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 1, no. 1, pp. 1–15, 2020.

A. I. Waspah et al., “Expectation Maximization Algorithm Memprediksi Penjualan Susu Murni Pada Pt . Sewu Primatama Indonesia Lampung,” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 7, no. 1, pp. 27–38, 2022.

W. Lidysari, H. S. Tambunan, and H. Qurniawan, “Penerapan Data Mining Dalam Menentukan Kelayakan Penerima Bantuan Sosial Pemko Dengan Algoritma C4.5 (Kasus Kantor Kelurahan Martoba),” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 3, no. 1, pp. 53–61, 2022.

K. Faradila Ilena Putri, Retno Damayanti, “Penerapan Algoritma K-Means Untuk Mengelompokan Kecamatan Di Kabupaten Gunungkidul Berdasarkan Program Keluarga Harapan,” in Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, 2022, pp. 408–418.

R. A. Islahudin, S. Rahmatullah, A. Afandi, and ..., “Algoritma C4. 5 Untuk Memprediksi Kelayakan Penerima Bantuan Pangan Non Tunai,” J. …, vol. 22, no. 02, pp. 147–159, 2022.

S. D. Anggriani, S. E. M. Syahril, and ..., “Data Mining Algoritma C4. 5 Untuk Menganalisa Penduduk Penerima Program Keluarga Harapan (PKH)(Studi Kasus: Kelurahan Tualang V),” J. Cyber …, no. x, 2022.

S. Muhamad, Agus Perdana Windarto, “Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 753–760, 2019.

S. Mukodimah, M. Muslihudin, D. R. Mustofa, and D. Susianto, “Naive Bayes Classifier Method Analysis and Support Vector Machine ( SVM ) Student Graduation Prediction,” NEUROQUANTOLOGY, vol. 20, no. 12, pp. 3522–3533, 2022.

R. Syahputra, G. J. Yanris, and D. Irmayani, “SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter,” Sinkron, vol. 7, no. 2, pp. 671–678, 2022.

D. A. C, D. A. Baskoro, L. Ambarwati, and I. W. S. Wicaksana, Belajar Data Mining dengan RapidMiner. 2013.

C. Algoritma, “Prediksi Kepuasan Tenant Pada Gedung Wisma Keiai Menggunakan,” vol. 2, no. 2, pp. 238–243, 2020.

R. H. Pambudi and B. D. Setiawan, “Penerapan Algoritma C4 . 5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,” vol. 2, no. 7, pp. 2637–2643, 2018.

O. Kinerja, E. C. U. Study, K. Mobil, and A. Dan, “Implementasi Algoritma K-Means Dan Algoritma Apriori,” vol. 1, no. 2, pp. 81–88, 2021.

V. S. Ginting, K. Kusrini, and E. Taufiq, “Implementasi Algoritma C4.5 untuk Memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan


Full Text: PDF

Article Metrics

Abstract View : 388 times
PDF Download : 110 times

DOI: 10.56327/jurnaltam.v14i2.1527

Refbacks

  • There are currently no refbacks.