DISEASE PREDICTION FROM COVID-19 MEDICAL DATA USING DATA MINING ALGORITHM
(1) American International University-Bangladesh
Corresponding Author
Abstract
Keywords
References
Afzal, A. (2020). Molecular diagnostic technologies for COVID-19: Limitations and challenges. Journal of Advanced Research, 26, 149–159. https://doi.org/10.1016/J.JARE.2020.08.002
Ahamad, M. M., Aktar, S., Rashed-Al-Mahfuz, M., Uddin, S., Liò, P., Xu, H., Summers, M. A., Quinn, J. M. W., & Moni, M. A. (2020). A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Systems with Applications, 160, 113661. https://doi.org/10.1016/J.ESWA.2020.113661
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. American Statistician, 46(3), 175–185. https://doi.org/10.1080/00031305.1992.10475879
Al-Turaiki, I., Alshahrani, M., & Almutairi, T. (2016). Building predictive models for MERS-CoV infections using data mining techniques. Journal of Infection and Public Health, 9(6), 744. https://doi.org/10.1016/J.JIPH.2016.09.007
Alzahrani, A., & Kanan, A. (2022). Machine Learning Approaches for Developing Land Cover Mapping. Applied Bionics and Biomechanics, 2022. https://doi.org/10.1155/2022/5190193
Ayon, S. I., Islam, M. M., & Hossain, M. R. (2022). Coronary Artery Heart Disease Prediction: A Comparative Study of Computational Intelligence Techniques. IETE Journal of Research, 68(4), 2488–2507. https://doi.org/10.1080/03772063.2020.1713916
Cao, R., & Xu, L. (2009). Improved C4.5 algorithm for the analysis of sales. 2009 6th Web Information Systems and Applications Conference, WISA 2009, 173–176. https://doi.org/10.1109/WISA.2009.36
Desuky, A. S. (2022). Two Enhancement Levels for Male Fertility Rate Categorization Using Whale Optimization and Pegasos Algorithms. In Advances in Medical Technologies and Clinical Practice (pp. 234–256). https://doi.org/10.4018/978-1-6684-5092-5.CH011
Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial version 7). (2020). Chinese Medical Journal, 133(9), 1087–1095. https://doi.org/10.1097/CM9.0000000000000819
European Centre for Disease Prevention (ECDC). (2020). Options for the use of rapid antigen tests for COVID-19 in the EU/EEA and the UK Key messages.
Everitt, B. S. , L. S. L. M. S. D. (2011). Miscellaneous Clustering Methods. 215–255. https://doi.org/10.1002/9780470977811.CH8
Fadugba, S. E., Shaalini, V. J., & Ibrahim, A. A. (2021). Analysis and applicability of a new quartic polynomial one-step method for solving COVID-19 model. Journal of Physics: Conference Series, 1734(1). https://doi.org/10.1088/1742-6596/1734/1/012019
Fan, H., Chen, Y., Huang, S., Zhang, X., Guan, H., & Shi, D. (2019). Post-fault Transient Stability Assessment Based on k-Nearest Neighbor Algorithm with Mahalanobis Distance. 2018 International Conference on Power System Technology, POWERCON 2018 - Proceedings, 4417–4423. https://doi.org/10.1109/POWERCON.2018.8602125
Ferreira, D., Oliveira, A., & Freitas, A. (2012). Applying data mining techniques to improve diagnosis in neonatal jaundice. BMC Medical Informatics and Decision Making, 12(1), 143. https://doi.org/10.1186/1472-6947-12-143/TABLES/2
Gandhi, R. (2018, May 5). Naive Bayes Classifier. What is a classifier? Towards Data Science. https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S. C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., … Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMOA2002032/SUPPL_FILE/NEJMOA2002032_DISCLOSURES.PDF
Haque, M. R., Islam, M. M., Iqbal, H., Reza, M. S., & Hasan, M. K. (2018). Performance Evaluation of Random Forests and Artificial Neural Networks for the Classification of Liver Disorder. International Conference on Computer, Communication, Chemical, Material and Electronic Engineering, IC4ME2 2018. https://doi.org/10.1109/IC4ME2.2018.8465658
Harrison, O. (2018, September 11). Machine Learning Basics with the K-Nearest Neighbors Algorithm | by |. Towards Data Science. https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
Hasan, N., Chaudhary, K., & Alam, M. (2021). Unsupervised machine learning framework for early machine failure detection in an industry. Https://Doi.Org/10.1080/09720529.2021.1951434, 24(5), 1497–1508. https://doi.org/10.1080/09720529.2021.1951434
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601
Hungund, B. (2020). COVID-19 Symptoms Checker. https://www.kaggle.com/datasets/iamhungundji/covid19-symptoms-checker?select=Cleaned-Data.csv
Hussain, S., Muhammad, L. J., Ishaq, F. S., Yakubu, A., & Mohammed, I. A. (2019). Performance evaluation of various data mining algorithms on road traffic accident dataset. Smart Innovation, Systems and Technologies, 106, 67–78. https://doi.org/10.1007/978-981-13-1742-2_7
Indhumathi, K., & Kumar, K. S. (2022). Seasonal Infectious Disease Prediction based on Electronic Patient Health Records using Boosted Random Forest Algorithms. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022, 2025–2032. https://doi.org/10.1109/ICACITE53722.2022.9823453
Islam, M. M., Iqbal, H., Haque, M. R., & Hasan, M. K. (2018). Prediction of breast cancer using support vector machine and K-Nearest neighbors. 5th IEEE Region 10 Humanitarian Technology Conference 2017, R10-HTC 2017, 2018-January, 226–229. https://doi.org/10.1109/R10-HTC.2017.8288944
Ismail, A. A. A. (2020). Serological tests for COVID-19 antibodies: Limitations must be recognized. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 57(4), 274–276. https://doi.org/10.1177/0004563220927053
Iwendi, C., Bashir, A. K., Peshkar, A., Sujatha, R., Chatterjee, J. M., Pasupuleti, S., Mishra, R., Pillai, S., & Jo, O. (2020). COVID-19 patient health prediction using boosted random forest algorithm. Frontiers in Public Health, 8. https://doi.org/10.3389/FPUBH.2020.00357
Jaafar, H., Ramli, N. H., & Abdul Nasir, A. S. (2018). An Improvement To The k-Nearest Neighbor Classifier For ECG Database. IOP Conference Series: Materials Science and Engineering, 318(1), 012046. https://doi.org/10.1088/1757-899X/318/1/012046
Jibril, M. L., & Sharif, U. S. (2020). Power of Artificial Intelligence to Diagnose and Prevent Further COVID-19 Outbreak: A Short Communication. ArXiv Preprint. https://doi.org/10.48550/arxiv.2004.12463
Keeling, M. J., Hollingsworth, T. D., & Read, J. M. (2020). Efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19). Journal of Epidemiology and Community Health, 74(10), 861–866. https://doi.org/10.1136/JECH-2020-214051
Kohavi, R., & Quinlan, R. (1999). Decision tree discovery. https://www.semanticscholar.org/paper/Decision-tree-discovery-Kohavi-Quinlan/487203d0d87cc706ed90e40d3bc181e5779f1b87
Kumar, V., Lalotra, G. S., & Kumar, R. K. (2022). Improving performance of classifiers for diagnosis of critical diseases to prevent COVID risk. Computers & Electrical Engineering, 102, 108236. https://doi.org/10.1016/J.COMPELECENG.2022.108236
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/J.IJANTIMICAG.2020.105924
Li, Y. C., Bai, W. Z., & Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of Medical Virology, 92(6), 552–555. https://doi.org/10.1002/JMV.25728
Mahamunkar, G. S., & Netak, L. D. (2022). Comparison of Various Deep CNN Models for Land Use and Land Cover Classification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13184 LNCS, 499–510. https://doi.org/10.1007/978-3-030-98404-5_46
Majali, J., Niranjan, R., Phatak, V., & Tadakhe, O. (2015). Data Mining Techniques For Diagnosis And Prognosis Of Cancer. IJARCCE, 4(3), 613–615. https://doi.org/10.17148/IJARCCE.2015.43147
Muhammad, L. J., Abba Haruna, A., Mohammed, I. A., Abubakar, M., Badamasi, B. G., & Musa Amshi, J. (2019). Performance evaluation of classification data mining algorithms on coronary artery disease dataset. 2019 9th International Conference on Computer and Knowledge Engineering, ICCKE 2019, 1–5. https://doi.org/10.1109/ICCKE48569.2019.8964703
Muhammad, L. J., Islam, M. M., Usman, S. S., & Ayon, S. I. (2020). Predictive Data Mining Models for Novel Coronavirus (COVID-19) Infected Patients’ Recovery. SN Computer Science, 1(4). https://doi.org/10.1007/S42979-020-00216-W
Ng, E. (2019). Validation of a Protein Biomarker Panel for Early Hepatocellular Carcinoma Detection at the Point-Of-Care [Doctoral Thesis, Stanford University]. http://purl.stanford.edu/wq623yg2914
Pan, L., Mu, M., Yang, P., Sun, Y., Wang, R., Yan, J., Li, P., Hu, B., Wang, J., Hu, C., Jin, Y., Niu, X., Ping, R., Du, Y., Li, T., Xu, G., Hu, Q., & Tu, L. (2020). Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. American Journal of Gastroenterology, 115(5), 766–773. https://doi.org/10.14309/AJG.0000000000000620
Perkel, J. M. (2018). Why Jupyter is data scientists’ computational notebook of choice. Nature, 563(7729), 145–146. https://doi.org/10.1038/D41586-018-07196-1
Pounis, G. (2018). Statistical analysis of retrospective health and nutrition data. Analysis in Nutrition Research: Principles of Statistical Methodology and Interpretation of the Results, 103–144. https://doi.org/10.1016/B978-0-12-814556-2.00005-1
Prasad, R., Anjali, P., Adil, S., & Deepa, N. (2019). Heart disease prediction using logistic regression algorithm using machine learning. International Journal of Engineering and Advanced Technology, 8(3 Special Issue), 659–662.
Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wölfel, R., & Hoelscher, M. (2020). Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New England Journal of Medicine, 382(10), 970–971. https://doi.org/10.1056/NEJMC2001468/SUPPL_FILE/NEJMC2001468_DISCLOSURES.PDF
Saeed, A. A. (2021). Predictions of α-Decay Half-Lives for Neutron-Deficient Nuclei with the Aid of Machine Learning. Kwara State University.
Seo, S., Kim, Y., Han, H. J., Son, W. C., Hong, Z. Y., Sohn, I., Shim, J., & Hwang, C. (2021). Predicting Successes and Failures of Clinical Trials With Outer Product–Based Convolutional Neural Network. Frontiers in Pharmacology, 12, 1423. https://doi.org/10.3389/FPHAR.2021.670670/BIBTEX
Singh, Y. V., Singh, P., Khan, S., & Singh, R. S. (2022). A Machine Learning Model for Early Prediction and Detection of Sepsis in Intensive Care Unit Patients. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/9263391
Venkatalakshmi, B., & Shivsankar, M. V. (2014). Heart Disease Diagnosis using Predictive DataMining. International Journal of Innovative Research in Science, Engineering and Technology, 3(3), 1873–1877. http://www.cs.waikato.ac.nz/ml/weka
Villavicencio, C. N., Macrohon, J. J. E., Inbaraj, X. A., Jeng, J. H., & Hsieh, J. G. (2021). Covid-19 prediction applying supervised machine learning algorithms with comparative analysis using weka. Algorithms, 14(7). https://doi.org/10.3390/A14070201
Wang, G.-Q., Zhao, L., Wang, X., Jiao, Y.-M., & Wang, F.-S. (2021). Diagnosis and Treatment Protocol for COVID-19 Patients (Tentative 8th Edition): Interpretation of Updated Key Points. Infectious Diseases & Immunity, 1(1), 17. https://doi.org/10.1097/ID9.0000000000000002
Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., Niemeyer, D., Jones, T. C., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., & Wendtner, C. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature 2020 581:7809, 581(7809), 465–469. https://doi.org/10.1038/s41586-020-2196-x
World Health Organization (WHO). (2022, November 11). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/
Yahaya, B. Z., Muhammad, L. J., Abdulganiyyu, N., Ishaq, F. S., & Atomsa, Y. (2018). An Improved C4.5 Algorithm Using L’ Hospital Rule for Large Dataset. Indian Journal of Science and Technology, 11(47), 1–5. https://doi.org/10.17485/IJST/2018/V11I47/132538
Yi, C., Zhen, J., Li, Y., Yi, Y., Yin, P., & Min, H. (2018). A novel method to improve transfer learning based on mahalanobis distance. 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017, 2018-January, 2279–2283. https://doi.org/10.1109/ROBIO.2017.8324758
Zhang, J., Jun, T., Frank, J., Nirenberg, S., Kovatch, P., & Huang, K. lin. (2021). Prediction of individual COVID-19 diagnosis using baseline demographics and lab data. Scientific Reports 2021 11:1, 11(1), 1–8. https://doi.org/10.1038/s41598-021-93126-7
Article Metrics
Abstract View : 278 timesPDF Download : 67 times
DOI: 10.56327/ijiscs.v6i3.1312
Refbacks
- There are currently no refbacks.