APPLICATION OF DATA MINING IN HEALTHCARE OF BANGLADESH
(1) Department of Computer Science and Engineering, American International University
Corresponding Author
Abstract
Keywords
References
. Abdul, M., Khan, H., de Oliveira Cruz, V., Azad, A. K., Abul, D., & Azad, K. (2019). Bangladesh’s digital health journey: reflections on a decade of quiet revolution. In WHO South-East Asia Journal of Public Health (Vol. 8, Issue 2).
. Ahmad, P., Qamar, S., & Rizvi, S. (2015). Techniques of data mining in healthcare: a review. International Journal of Computer Applications, 120(15), 38–50. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=82289448146b86c6160bf5225bd5e3cea35a8c57
. Ahmed, T., Lucas, H., Khan, A. S., Islam, R., Bhuiya, A., & Iqbal, M. (2014). EHealth and mHealth initiatives in Bangladesh: A scoping study. BMC Health Services Research, 14(1), 1–9. https://doi.org/10.1186/1472-6963-14-260/FIGURES/2
. Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. Q. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database: The Journal of Biological Databases and Curation, 2020. https://doi.org/10.1093/DATABASE/BAAA010
. Akter, M., Islam, T., Trisha, K., & Ullah, M. (2019). An overview of data mining in medical informatics: Bangladesh perspective. Asian Journal of Medical and Biological Research, 5(4), 258–264. https://doi.org/10.3329/ajmbr.v5i4.45262
. Alam, M. Z., Hu, W., & Uddin, A. (2020). Digital Transformation in Healthcare Services Sector of Bangladesh: Current Status, Challenges and Future Direction. Journal on Innovation and Sustainability RISUS, 11(1), 30–38. https://doi.org/10.23925/2179-3565.2020V11I1P30-38
. Alhajaj, K. E., & Moonesar, I. A. (2023). The power of big data mining to improve the health care system in the United Arab Emirates. Journal of Big Data 2023 10:1, 10(1), 1–33. https://doi.org/10.1186/S40537-022-00681-5
. Altalhi, A. H., Luna, J. M., Vallejo, M. A., & Ventura, S. (2017). Evaluation and comparison of open source software suites for data mining and knowledge discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(3). https://doi.org/10.1002/WIDM.1204
. Baker, R. S. J. d. (2010a). Data Mining. In P. Peterson, E. Baker, & B. McGaw (Eds.), International Encyclopedia of Education (Third Edition) (pp. 112–118). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-044894-7.01318-X
. Baker, R. S. J. d. (2010b). Data Mining. International Encyclopedia of Education, 112–118. https://doi.org/10.1016/B978-0-08-044894-7.01318-X
. Berry, M. J. A., & Linoff, G. S. (2004). Data Mining Techniques for Marketing, Sales, and Customer Relationship Management (2nd Ediction). Wiley Publishing, Inc.
. Bharati, M., & Ramageri, B. M. (2010). Data mining techniques and applications. Indian Journal of Computer Science and Engineering, 1(4). https://www.researchgate.net/publication/49616224_Data_mining_techniques_and_applications
. Cifci, M. A., & Hussain, S. (2018). Data mining usage and applications in health services. International Journal on Informatics Visualization, 2(4), 225–231. https://doi.org/10.30630/JOIV.2.4.148
. Coomans, D., Smyth, C., Lee, I., Hancock, T., & Yang, J. (2009). Unsupervised Data Mining: Introduction. Comprehensive Chemometrics, 2, 559–576. https://doi.org/10.1016/B978-044452701-1.00063-6
. Doguc, O., Canbolat, Z. N., & Silahtaroglu, G. (2022). Recent applications of data mining in medical diagnosis and prediction. Big Data Analytics for Healthcare: Datasets, Techniques, Life Cycles, Management, and Applications, 95–109. https://doi.org/10.1016/B978-0-323-91907-4.00006-6
. Fernandez, G. (2003). Data Mining: A Gentle Introduction. In Data mining using SAS applications (pp. 1–361). Chapman & Hall/CRC. https://doc.lagout.org/Others/Data%20Mining/Data%20Mining%20using%20SAS%20Applications%20%5BFernandez%202002-12-27%5D.pdf
. Fernandez, G. (2010). Data Mining: A Gentle Introduction. In Statistical data mining using SAS applications (p. 453). CRC Press. https://www.routledge.com/Statistical-Data-Mining-Using-SAS-Applications/Fernandez/p/book/9781439810750
. Ghorbian, M. (2019, July 12). 14 areas where data mining is widely used . https://www.researchgate.net/post/2
. Gobert, J. D., Pedro, M. A. S., Baker, R. S. J. d., Toto, E., & Montalvo, O. (2012). Leveraging Educational Data Mining for Real-time Performance Assessment of Scientific Inquiry Skills within Microworlds. Journal of Educational Data Mining, 4(1), 111–143. https://doi.org/10.5281/ZENODO.3554645
. Hicham, A., Jeghal, A., Sabri, A., & Tairi, H. (2020). A Survey on Educational Data Mining [2014-2019]. 2020 International Conference on Intelligent Systems and Computer Vision, ISCV 2020. https://doi.org/10.1109/ISCV49265.2020.9204013
. Hosseini, S., & Sardo, S. R. (2021). Data mining tools -a case study for network intrusion detection. Multimedia Tools and Applications, 80(4), 4999–5019. https://doi.org/10.1007/s11042-020-09916-0
. Jahankhani, H. (2023). Cybersecurity in the Age of Smart Societies. In H. Jahankhani (Ed.), Proceedings of the 14th International Conference on Global Security, Safety and Sustainability. Springer International Publishing. https://doi.org/10.1007/978-3-031-20160-8
. Jain, A., Hautier, G., Ong, S. P., & Persson, K. (2016). New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. Journal of Materials Research, 31(8), 977–994. https://doi.org/10.1557/JMR.2016.80
. Jain, N., & Srivastava, V. (2013). Data mining techniques: a survey paper. International Journal of Research in Engineering and Technology, 2(11), 116–119. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1c5971351969d6729e0a27715934bf771e1d833c
. Joarder, T., Chaudhury, T. Z., & Mannan, I. (2019). Universal Health Coverage in Bangladesh: Activities, Challenges, and Suggestions. Advances in Public Health, 2019, 1–12. https://doi.org/10.1155/2019/4954095
. Joseph, R., & Karthiga, S. (2014). Data Mining Techniques Approaches in Healthcare. International Journal of Computer Science and Information Technology Research, 2(2), 194–201. www.sas.com.
. Joudaki, H., Rashidian, A., Minaei-Bidgoli, B., Mahmoodi, M., Geraili, B., Nasiri, M., & Arab, M. (2015). Using Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature. Global Journal of Health Science, 7(1), 194. https://doi.org/10.5539/GJHS.V7N1P194
. Kaufman, K. A., & Michalski, R. S. (2005). From Data Mining to Knowledge Mining. Handbook of Statistics, 24, 47–75. https://doi.org/10.1016/S0169-7161(04)24002-0
. Khan, M. A. H., Azad, A. K., & Cruz, V. de O. (2019). Bangladesh’s digital health journey: reflections on a decade of quiet revolution. WHO South-East Asia Journal of Public Health, 8(2), 71–76. https://apps.who.int/iris/handle/10665/329331
. Kolling, M. L., Furstenau, L. B., Sott, M. K., Rabaioli, B., Ulmi, P. H., Bragazzi, N. L., & Tedesco, L. P. C. (2021). Data Mining in Healthcare: Applying Strategic Intelligence Techniques to Depict 25 Years of Research Development. International Journal of Environmental Research and Public Health, 18(6), 1–21. https://doi.org/10.3390/IJERPH18063099
. Kumar Grover, L., & Mehra, R. (2008). The Lure of Statistics in Data Mining. Journal of Statistics Education, 16(1). https://doi.org/10.1080/10691898.2008.11889552
. Kumaraswamy, N., Markey, M. K., Ekin, T., Barner, J. C., & Rascati, K. (2022). Healthcare Fraud Data Mining Methods: A Look Back and Look Ahead. Perspectives in Health Information Management, 19(1). /pmc/articles/PMC9013219/
. Liao, S., Chu, P., & Hsiao, P. (2012). Data mining techniques and applications–A decade review from 2000 to 2011. Expert Systems with Applications, 39, 11303–11311. https://doi.org/10.1016/j.eswa.2012.02.063
. Mahdy, H. al. (2009). Reforming the Bangladesh healthcare system. International Journal of Health Care Quality Assurance, 22(4), 411–416. https://doi.org/10.1108/09526860910964852
. McClean, S. I. (2003). Data Mining and Knowledge Discovery. Encyclopedia of Physical Science and Technology, 229–246. https://doi.org/10.1016/B0-12-227410-5/00845-0
. Miah, S. J., Gammack, J., & Hasan, N. (2020). Methodologies for designing healthcare analytics solutions: A literature analysis. Health Informatics Journal, 26(4), 2300–2314. https://doi.org/10.1177/1460458219895386/ASSET/IMAGES/LARGE/10.1177_1460458219895386-FIG2.JPEG
. Mikut, R., & Reischl, M. (2011). Data mining tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(5), 431–443. https://doi.org/https://doi.org/10.1002/widm.1309
. MIS-DGHS. (2017). Health Bulletin, 2016. www.dghs.gov.bd
. Mukerji, B. (2022). Modern techniques for identifying mineralization in virgin area. Innovative Exploration Methods for Minerals, Oil, Gas, and Groundwater for Sustainable Development, 297–309. https://doi.org/10.1016/B978-0-12-823998-8.00014-4
. Muriithi, I. A. (2014). A Data Mining approach to private healthcare services demand forecast in Nairobi County [University of Nairobi]. https://docplayer.net/15263268-University-of-nairobi.html
. Namoun, A., & Alshanqiti, A. (2020). Predicting Student Performance Using Data Mining and Learning Analytics Techniques: A Systematic Literature Review. Applied Sciences 2021, Vol. 11, Page 237, 11(1), 237. https://doi.org/10.3390/APP11010237
. Nisbet, R., Elder, J., & Miner, G. (2009). The Data Mining Process. In R. Nisbet, J. Elder, & G. Miner (Eds.), Handbook of Statistical Analysis and Data Mining Applications (pp. 33–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374765-5.00003-6
. Nisbet, R., Miner, G., & Yale, K. (2018). Theoretical Considerations for Data Mining. In R. Nisbet, G. Miner, & K. Yale (Eds.), Handbook of Statistical Analysis and Data Mining Applications (Second Edition) (pp. 21–37). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-416632-5.00002-5
. Obenshain, M. (2004). Application of data mining techniques to healthcare data. Infection Control & Hospital Epidemiology, 25(8), 690–695. https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/application-of-data-mining-techniques-to-healthcare-data/7EE5E7B1FA8B1C535FBC7A3881EC42E0
. Obenshain, M. K. (2004). Application of Data Mining Techniques to Healthcare Data. Infection Control & Hospital Epidemiology, 25(8), 690–695. https://doi.org/10.1086/502460
. Ogundele, I., Popoola, O., & Oyesola, O. (2018). A review on data mining in healthcare. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 7(9), 698–704. https://www.academia.edu/download/63168792/IJARCET-VOL-7-ISSUE-9-698-70420200501-106436-q3miyw.pdf
. Osman, A. S. (2019). Data mining techniques: Review. International Journal of Data Science Research, 2(1). http://ojs.mediu.edu.my/index.php/IJDSR/article/view/1841
. Ozcan, T., & Esnaf, Ş. (2016). Swarm Intelligence Approaches to Shelf Space Allocation Problem with Linear Profit Function. 22–41. https://doi.org/10.4018/978-1-5225-0075-9.CH002
. Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic. Frontiers in Psychology, 9(NOV). https://doi.org/10.3389/FPSYG.2018.02231/FULL
. R. Pallavi Reddy. (2020). A Review on Data Mining Techniques and Challenges in Medical Field. International Journal of Engineering Research And, V9(08). https://doi.org/10.17577/IJERTV9IS080143
. Raghupathi, W. (2010). Data Mining in Healthcare. In Healthcare Informatics: Improving Efficiency and Productivity (1st ed., pp. 211–224). CRC Press. https://doi.org/10.1201/9781439809792-C11
. Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, 2(1). https://doi.org/10.1186/2047-2501-2-3
. Rawte, V., & Anuradha, G. (2015). Fraud detection in health insurance using data mining techniques. Proceedings - 2015 International Conference on Communication, Information and Computing Technology, ICCICT 2015. https://doi.org/10.1109/ICCICT.2015.7045689
. Razu, S. R., Yasmin, T., Arif, T. B., Islam, M. S., Islam, S. M. S., Gesesew, H. A., & Ward, P. (2021). Challenges Faced by Healthcare Professionals During the COVID-19 Pandemic: A Qualitative Inquiry From Bangladesh. Frontiers in Public Health, 9, 1024. https://doi.org/10.3389/FPUBH.2021.647315/BIBTEX
. Razzak, M. I., Imran, M., & Xu, G. (2020). Big data analytics for preventive medicine. Neural Computing & Applications, 32(9), 4417. https://doi.org/10.1007/S00521-019-04095-Y
. Richters, C., Stadler, M., Radkowitsch, A., Schmidmaier, R., Fischer, M. R., & Fischer, F. (2023). Who is on the right track? Behavior-based prediction of diagnostic success in a collaborative diagnostic reasoning simulation. Large-Scale Assessments in Education, 11(1), 1–24. https://doi.org/10.1186/S40536-023-00151-1/FIGURES/3
. Rui, Y., Carmona, V. I. S., Pourvali, M., Xing, Y., Yi, W. W., Ruan, H. bin, & Zhang, Y. (2022). Knowledge Mining: A Cross-disciplinary Survey. Machine Intelligence Research, 19(2), 89–114. https://doi.org/10.1007/S11633-022-1323-6/METRICS
. Santos-Pereira, J., Gruenwald, L., & Bernardino, J. (2022). Top data mining tools for the healthcare industry. Journal of King Saud University - Computer and Information Sciences, 34(8), 4968–4982. https://doi.org/10.1016/J.JKSUCI.2021.06.002
. Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive Data Mining for Medical Diagnosis: An Overview of Heart Disease Prediction. International Journal of Computer Applications, 17(8), 43–48. https://doi.org/10.5120/2237-2860
. Sowah, R. A., Kuuboore, M., Ofoli, A., Kwofie, S., Asiedu, L., Koumadi, K. M., & Apeadu, K. O. (2019). Decision Support System (DSS) for Fraud Detection in Health Insurance Claims Using Genetic Support Vector Machines (GSVMs). Journal of Engineering (United Kingdom), 2019. https://doi.org/10.1155/2019/1432597
. Swarnalatha, D. . T. ., & Sireesha, V. . (2018). Data Mining and Knowledge Discovery. International Journal of Engineering Research & Technology, 2(15). https://doi.org/10.17577/IJERTCONV2IS15022
. Trang, N. (2020). The application of Association Rule in data mining and building an assessment and classification system of students in Intermediate Professional Education. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 9(3), 38–42. https://www.academia.edu/42899581/The_application_of_Association_Rule_in_data_mining_and_building_an_assessment_and_classification_system_of_students_in_Intermediate_Professional_Education
. UNISEF Regional Office for South Asia (ROSA). (2019). Health System Strengthening: Transforming the health information system in Bangladesh. https://www.unicef.org/rosa/reports/health-system-strengthening-transforming-health-information-system-bangladesh
. Ushasri, K., Kishore, P. J., Reddy, K., Sekar, K., & Prasad, A. R. (2018). Applications of Data Mining in Healthcare. International Journal of Engineering Research & Technology, 2(15). https://doi.org/10.17577/IJERTCONV2IS15030
. Walid, M. A. A., Ahmed, S. M. M., Zeyad, M., Galib, S. M. S., & Nesa, M. (2022). Analysis of machine learning strategies for prediction of passing undergraduate admission test. International Journal of Information Management Data Insights, 2(2), 100111. https://doi.org/10.1016/J.JJIMEI.2022.100111
. Warschauer, M., Yim, S., Lee, H., & Zheng, B. (2019). Recent Contributions of Data Mining to Language Learning Research. Annual Review of Applied Linguistics, 39, 93–112. https://doi.org/10.1017/S0267190519000023
. World Health Organization. (2023, March 7). Data collection tools - WHO. https://www.who.int/data/data-collection-tools
. World Health Organization (WHO). (2011). Keeping Promises, Measuring Results . www.who.int
. Yang, X.-S. (2019). Mathematical foundations. Introduction to Algorithms for Data Mining and Machine Learning, 19–43. https://doi.org/10.1016/B978-0-12-817216-2.00009-0
Article Metrics
Abstract View : 354 timesPDF Download : 135 times
DOI: 10.56327/ijiscs.v7i2.1433
Refbacks
- There are currently no refbacks.