APPLICATION OF DATA MINING IN PREDICTING THE AMOUNT OF RESTAURANT TAX REVENUE USING C4.5

Roby Afriza(1), Nurmayanti Nurmayanti(2), Merri Parida(3), Sidik Rahmatullah(4),


(1) Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia
(2) Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia
(3) Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia
(4) Institut Teknologi Bisnis dan Bahasa Dian Cipta Cendikia
Corresponding Author

Abstract


Regional taxes are one of the important sources of regional income to finance the implementation of regional government in the context of serving the community and realizing regional independence. Restaurant tax is one of the regional taxes collected by the Way Kanan Regency Regional Revenue Agency and one of the determinants of the increase in Way Kanan District Original Revenue (PAD). Adapum This research raises the problem of not achieving the Restaurant Tax target in 2023. In this study using Data Mining there are various methods in data mining including the C4.5 algorithm. The C4.5 approach can forecast an increase in restaurant taxes, and the computation of the C4.5 algorithm yields the following results. From the results of calculating the 2018-2022 data above using Microsoft Excel, it is known that Class Recommendations totaling 185 are classified as Yes and No, 0 are classified as Yes but No, Next Class No totaling 65 is classified as No, and 0 Yes is classified as No, with a total data of 250. Microsoft Excel and Google Colab programs have been used to implement the C4.5 algorithm. Implementation of the C4.5 Algorithm has been carried out using Microsoft Excel and Googlel Colab applications. The result is that the description of all formulas and predictive results is simpler than the results of manual calculations through Microsoft excel using the C4.5 Algorithm which has an accuracy of 75%, and then proven by Google Colab with results of 100% accuracy.

Keywords


Restaurant Tax, Prediction, Data Mining, C4.5 Algorithm, Google Colab

References


A. Biringkanae dan R. G. Tammu, “Terhadap Pendapatan Asli Daerah Kabupaten Tana Toraja,” Public Adm. J., vol. 4, no. 1, 2021.

A. I. Waspah et al., “Expectation Maximization Algorithm Memprediksi Penjualan Susu Murni Pada Pt . Sewu Primatama Indonesia Lampung,” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 7, no. 1, hal. 27–38, 2022.

N. A. Hasibuan et al., “Implementasi Data Mining Untuk Pengaturan Layout,” vol. 4, no. 4, hal. 6–11, 2017.

Yuli Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ) . Jurnal Edik Informatika,” J. Edik Inform., vol. 2, no. 2, hal. 213–219, 2019.

K. Vol, “S T M I K D i a n C i p t a C e n d i k i a K o t a b u m i,” no. 1, 2022.

O. Kinerja, E. C. U. Study, K. Mobil, dan A. Dan, “Implementasi Algoritma K-Means Dan Algoritma Apriori,” vol. 1, no. 2, hal. 81–88, 2021.

C. Algorithm et al., “Classification and Clustering of Internet Quota Sales Data Using,” vol. 9, no. 2, hal. 268–283, 2023, doi: 10.26555/jiteki.v9i2.25970.

E. V. Astuti dan R. Mawarni, “the Comparison Using Expectation- Maximization Algorithm and C4 . 5 Algorithm To Predict the Result of Biogas Production As a Power Plant At Pt Budi Starch & Sweetener ( Bssw ),” hal. 186–198.

I. Junaedi, N. Nuswantari, dan V. Yasin, “Perancangan Dan Implementasi Algoritma C4 . 5 Untuk Data Mining,” J. Inf. Syst. Informatics Comput., vol. 3, no. 1, hal. 29–44, 2019.

A. Afandi, D. Nurdianah, P. C. Rejo, N. Bayes, dan K. A. Dominan, “Naive Bayes Method and C4 . 5 in Classification of Birth Data,” vol. 16, no. 4, hal. 435–446, 2022.

R. O. Felani, W. Cholil, dan H. Syaputra, “Analisa Prilaku Pengguna E-Learning Menggunakan,” vol. 7, no. 1, hal. 61–73, 2022.

A. Sitio, A. Sindar, M. Marbun, D. Tiara, dan A. Aswin, “Pengenalan Data Scientist Pada Peserta PKBM AL HABIB Melalui Belajar Dasar Coding Python,” J. Pengabdi. Pada Masy., vol. 7, no. 1, hal. 194–200, 2022, doi: 10.30653/002.202271.44.

S. Mintoro dan A. Afandi, “Implementasi Algoritma K-Means Dan Algoritma Apriori Optimasi Kinerja Ecu (Study Kasus Mobil Avanza Dan Xenia),” J. Inf. dan Komput., vol. 9, no. 2, hal. 81–88, 2021, doi: 10.35959/jik.v9i2.235.

F. Rahmadani, A. M. H. Pardede, dan Nurhayati, “Jaringan Syaraf Tiruan Prediksi Jumlah Pengiriman Barang Menggunakan Metode Backpropagation,” J. Tek. Inform. Kaputama, vol. 5, no. 1, hal. 100–106, 2021.

F. Sari dan D. Saro, “Implementasi Algoritma C4.5 Dalam Menentukan Lokasi Prioritas Penyuluhan Program Keluarga berencana di kecamatan dumai timur,” J. Penelit. Pos dan Inform., vol. 8, no. 1, hal. 63, 2018, doi: 10.17933/jppi.2018.080105.


Full Text: PDF

Article Metrics

Abstract View : 326 times
PDF Download : 155 times

DOI: 10.56327/jurnaltam.v14i2.1505

Refbacks

  • There are currently no refbacks.