IMPLEMENTATION OF BILATERAL FILTERING FOR AESTHETIC ENHANCEMENT OF FACIAL IMAGES

Ardi Wijaya(1), Lovi Febriani(2), Muntahanah Muntahanah(3), Nuri David Maria Veronika(4),


(1) Universitas Muhammadiyah Bengkulu
(2) Universitas Muhammadiyah Bengkulu
(3) Universitas Muhammadiyah Bengkulu
(4) Universitas Muhammadiyah Bengkulu
Corresponding Author

Abstract


Digital image is a representation of an image in the form of pixels arranged in a matrix. The image processing process includes acquisition, analysis, and manipulation to produce the desired output. In photography and social media, digital images play an important role in attracting attention. However, photos often experience problems such as noise and uneven lighting, which can reduce image quality. Therefore, image enhancement is needed to overcome these problems. The Bilateral Filtering method is one of the techniques that is very effective in reducing noise by considering the special distance and intensity differences between pixels, so that it can maintain the clarity of important elements in the image. This study aims to implement this technique in improving the aesthetics of facial images and evaluate its effectiveness in producing more attractive and high-quality images. from 50 datasets taken. The results of the study showed that Bilateral Filtering was able to improve the clarity of facial images without eliminating important details. The evaluation was carried out using image quality parameters such as PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index), which showed an increase in quality after the application of this method. In terms of user satisfaction, the results of the questionnaire showed that the satisfaction level reached 86.38%, which based on Table 5 is included in the "very good" category. Thus, the Bilateral Filtering method not only successfully improves the image quality without losing important details on the face. Objectively, but also provides high satisfaction for users in terms of aesthetics and visual comfort.

Keywords


Bilateral Filtering To Repair Damaged Images.

References


Essra, A. (2017). Analisis Deteksi Tepi Canny Pada Citra Dengan Gaussian Filtering Dan Bilateral Filtering. Jurnal ISD, 2(1), 2477–2863.

Fauziza, D., & Kolina, Z. (2022). Aplikasi Interaktif Pengenalan Batik untuk Pengunjung Pameran Berbasis Android dan Image Processing. JTET(Jurnal Teknik Elektro Terapan), 11(1), 8–18.

Gansar Suwanto, Adam, R. I., & Garno. (2021). Identifikasi Citra Digital Jenis Beras Menggunakan Metode Anfis dan Sobel. Jurnal Informatika Polinema, 7(2), 123–128. https://doi.org/10.33795/jip.v7i2.406

Harahap, N. (2020). Implementasi Metode Bilateral Filter Perbaikan Kualitas Citra RGB. Journal of Computer System and Informatics (JoSYC), 1(3), 117–125.

Kurnia, H., & Hidayat, T. (2023). Penajaman Kualitas Citra Digital Menggunakan Histogram Equalization. J-SISKO TECH (Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD), 6(1), 1. https://doi.org/10.53513/jsk.v6i1.6202

Mona, P. (2020). Implementasi Metode Bilateral Filter Untuk Mengurangi Derau Pada Citra Magnetic Resonance Imaging (MRI). Jurnal Informasi Dan Teknologi Ilmiah (INTI), 7(3), 259–263.

Sara, U., Akter, M., & Uddin, M. S. (2019). Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. Journal of Computer and Communications, 07(03), 8–18. https://doi.org/10.4236/jcc.2019.73002

Tjahjadi, J., Tanuwijaya, P., & Riti, Y. F. (2023). Analisis Perbandingan Algoritme Penghapusan Noise pada Citra X-Ray Paru - Paru. Pseudocode, 10(2), 80–89. https://doi.org/10.33369/pseudocode.10.2.80-89

Wijaya, A., & Franata, H. (2020). Peningkatan Hasil Segmentasi Deteksi Tepi Menggunakan Morphology Pada Pengolahan Citra. Jukomika - (Jurnal Ilmu Komputer Dan Informatika, 3, 2655–2755.

Wijaya, A., Toyib, R., Kontesa, R., Wibowo, S. H., & Bengkulu, U. M. (2023). Analisis Citra Digital Menggunakan Morpologi Opening Untuk. 6(2), 192–197.

Wijaya, A., Yudha, B. S., Apridiansyah, Y., David, N., & Veronika, M. (2024). Integrasi Metode Viola-Jones dan Algoritma Pelabelan untuk Akurasi Deteksi Objek Manusia. 19(2), 227–239.

Wu, L., Fang, L., Yue, J., Zhang, B., Ghamisi, P., & He, M. (2022). Deep Bilateral Filtering Network for Point-Supervised Semantic Segmentation in Remote Sensing Images. IEEE Transactions on Image Processing, 31, 7419–7434. https://doi.org/10.1109/TIP.2022.3222904

Zou, B., Qiu, H., & Lu, Y. (2020). Point Cloud Reduction and Denoising Based on Optimized Downsampling and Bilateral Filtering. IEEE Access, 8, 136316–136326. https://doi.org/10.1109/ACCESS.2020.3011989


Full Text: PDF

Article Metrics

Abstract View : 288 times
PDF Download : 70 times

DOI: 10.56327/jurnaltam.v16i1.1803

Refbacks

  • There are currently no refbacks.